Sunday, 3 December 2017

Math 101 - Lecture 9 Revision

Maths 101 – Lecture 9 Revision

Supermum x  k for x  S
            And K - x for some x  S and  > 0

Infinum k  x, for all x  S and k +> x, for some x  S and any  > 0.
Eg        1 s1 = { x  Q  x  ½ }
2 s2 = { x  Q  x2 < 2 }
            3 s3 = { ½, 2/3, ¾, ... n/(n + 1), ... }
            4 s4 = { 1, ½, ¼, ... 2-n }

Which sets are bounded? What are the supermum and infinmum?
Solutions
1 Bounded                   Supremum is ½ and is contained in S.
                                    Infinmum is 0 and is contained in S.
2 Boundednote              S2 = { x  Q : - √2 < x √2}
                                    Supremum is √2, note √2 is not in S2
                                    Infinmum is -√2, note √2 is not in S2
3 Bounded                   Supremum is 1, note 1 is not in S3
                                    Infinmum is ½, note ½ is in S3
4 Bounded                   Supremum is 1, note 1 is in S4
                                    Infinmum is 0, note 0 is not in

-//-

Complex numbers
Any equation x2 = a, a  R
Cannot be solved for x  R, if a < 0
Extend R so that x2 = -1 has a solution
Yes can solve it in C (Complex numbers)

C is R with an element I = √-1 (and its multiples etc)
Note R ⸦ C
Any complex number z  C, can be put into the form z = a +ib; a, b  R
a = Real part of z  = a + ib, Re(z) = a
b = Imaginary part of z, a + ib, Im(z) = b
eg 2 – 3i  C
Re(2-3i) = 2
Im(2-3i) = -3
Addition of elements C
Eg (2-3i) + (1+i) = 3 – 2i
Note: Re(z1 + z2) = x1 + x2
Im (z1 + z2) = y1 + y2
Multiplication
Eg (2 – 3i)(1 + i)         = 2 + 2i – 3i – 3i2
                                    = 2 – i – 3i2, but i2 =  -1
                                    = 2 – i – 3 – 1
                                    = 5 – i
General           z1 = x1 + iy1
                        Z2 = x2 + iy2

z1z2 = (x1 + iy1)( x2 + iy2)       = x1x2 + ix1y2 + iy1x2 + i2y1y2
                                                = x1x2 – y1y2 + i(x1y2 + x2y1)
(a)   (2 + 3i)(10 – i)            = 20 – 2i + 30i – 3i2
= 23 + 28i
(b)   (1 + i)2             = (1 + i)(1 = i)             (c) (√2 - i)2      = (√2)2 + (-i)2 - 2√2i
= 1 + i + i + i2                                     = 2 – 1 - 2√2i
= 2i                                                      = 1 - 2√2i

(d) i3 = i2i = -i
(e) i4 = (i2) = (-1)2 = i
(f) i5 = i ,




No comments:

Post a Comment