Thursday, 27 September 2018

Math101 Revision - Lecture 14


Math101 – Lecture 14 Revision
We say f(x) à L
As x à c, or        lim f(x) = L
                              x à c
if given > 0 there exists δ 7 such that |f(x) – L| < whenever |x à c| < δ
Prove formally that
Lim         (x + 1
____ = 1
1 - x)
X à 0

Proof: Let > 0 given let |x - 0| < δ, ie x |x| < δ with δ to be determined.

We want to prove à
|x + 1
____ - 1               < ℇ, whenever |x| < δ
1 – x      |
We have to find the δ

x + 1                      1 + x – (1 – x)
____ - 1 =            ___________
1 – x                     1 – x

               =             2x
                              ____
                              1 – x

So,
|x + 1                                  |2x
____ - 1               =             ____
1 – x      |                            1 – x|

                                             =             2|x|                      2δ
                                                            ______  <             ______
                                                            |1 + x|                 |1 + x|

|1 - x| > |1| - |x|

For δ < 1 (so |x| < 1), we have (1 – x)  > 1 - |x| > 1 - |x| > 1 – δ


               1                            1
           _______   <            _____
               |1 – x|                  1 – δ




|1 + x                                  2δ                          2δ
_______ - 1        <             _____    <             ____
1 – x           |                       |1 – x|                 1 - δ

                              2δ                                        
Now choose at _____     = , ie δ =            ____
                              1 – c                                    2 +

Then we have
|1 + x                                  2δ          
_______ - 1        <             _____    =
1 – x           |                       1 –      

                                            
Whenever |x| < δ =        ____
                                             2 +

|x – L| < δ
i.e. – δ < x – c < δ

i.e.
c – δ < x < δ + c

Our limit, so far, are two sided. We take x à c+ (approach from above c) and x à c- (approach from below c)
This will not work for √x as x à 0
We need one sided limits in this case.
eg Discuss the limit x à 1 for
               x2, x > 1
f(x) = {
               1 – x, x < 1



Two sided limits at x = 1
From the left x à 1- , f(x) = 1 – x à 0 but 0 is not in the range of f from the right, x à x+ f(x) = x2 = 1


Limits as x à + ∞
Are one sided.

x à ∞ is from below.

x à -∞ is from above

Formally: - we say f(x) à L as x à ∞, OR               lim          f(x) = L, if given any > 0 there exists some x
                                                                                          x à
such that |f(x) - L| < 3, whenever x > X.
Prove that 1/x à 0 as x à

Proof: Let > 0 be given
               Let x > X, X to be determined
               [We want to prove that |1/x| < whenever x > X]
               We can take x > 0, as x > 0 and |1/x| = 1/x < 1/X
               Choose X = 1/ ℇ (as 1/x = ℇ)
So,  |1/x| < ℇ whenever x > 1/ ℇ             e.g. prove that 1/√(x 2+ 1) à 0 as à

Proof: Let ℇ > 0 be given. Let x > X, x to be determined |1/√(x 2+ 1) – 0| = 1/√(x 2+ 1) < 1/x2 <
                                                                                                                        Limit -->
1/X, choose x = 1/ ℇ
Then |1/√(x 2+ 1)| < ℇ for x > X

eg Prove that ((x + 1) -(x - 1))/x à as x à

Proof: Let > 0 be given Let x > X, X to be determined
Firstly ((x + 1) -(x - 1))/x           =  (((x + 1) -(x - 1))/x) * (((x + 1) + (x + 1))/((x + 1) + (x + 1))
                                                            = ((x + 1) – (x – 1))/(x((x + 1) + (x + 1))
                                                            = 2/(x((x + 1) + (x + 1)) < 2/x
Since (x + 1) + (x + 1) > 1
But 2/x < 2/X, as x > X
((x + 1) -(x - 1))/x < 2/x
Choose x = 2/ℇ (as 2/x = ℇ)
((x + 1) -(x - 1))/x <
Whenever x > X = 2/




No comments:

Post a Comment